Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles
نویسندگان
چکیده
منابع مشابه
Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles
Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper propose...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملIntegrating Biological Knowledge with Gene Expression Profiles for Survival Prediction of Cancer
Due to the large variability in survival times between cancer patients and the plethora of genes on microarrays unrelated to outcome, building accurate prediction models that are easy to interpret remains a challenge. In this paper, we propose a general strategy for improving performance and interpretability of prediction models by integrating gene expression data with prior biological knowledg...
متن کاملPrediction of cytogenetic abnormalities with gene expression profiles.
Cytogenetic abnormalities are important clinical parameters in various types of cancer, including multiple myeloma. We developed a model to predict cytogenetic abnormalities in patients with multiple myeloma using gene expression profiling and validated it by different cytogenetic techniques. The model has an accuracy rate up to 0.89. These results provide proof of concept for the hypothesis th...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMed Research International
سال: 2016
ISSN: 2314-6133,2314-6141
DOI: 10.1155/2016/4596326